Contents lists available at ScienceDirect

Journal of Organometallic Chemistry

journal homepage: www.elsevier.com/locate/jorganchem

Catalytic hydrogenation of C=O and C=N bonds via heterolysis of H₂ mediated by metal-sulfur bonds of rhodium and iridium thiolate complexes

Mayumi Sakamoto^a, Yasuhiro Ohki^{a,*}, Gerald Kehr^b, Gerhard Erker^b, Kazuyuki Tatsumi^{a,*}

^a Department of Chemistry, Graduate School of Science and Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan ^b Organisch-Chemisches Institut, Universität Münster, Corrensstraße 40, D-48149 Münster, Germany

ARTICLE INFO

Article history: Received 31 January 2009 Received in revised form 18 February 2009 Accepted 18 February 2009 Available online 28 February 2009

Keywords: Rhodium Iridium Thiolate H₂ activation Hydrogenation

ABSTRACT

Coordinatively unsaturated rhodium and iridium complexes having a bulky thiolate, $[Cp^{*}M(PMe_{3})(SDmp)](BAr_{F}^{F})$ (**1a**: M = Rh; **1b**: M = Ir; Dmp = 2,6-(mesityl)₂C₆H₃, Ar^F = 3,5-(CF₃)₂C₆H₃), catalyzed the hydrogenation of benzaldehyde, *N*-benzylideneaniline, and cyclohexanone, under 1 atm of H₂ at low temperatures. In these catalytic reactions, the M–H/S–H complexes $[Cp^{*}M(PMe_{3})(H)(HSDmp)]$ - (BAr_{F}^{F}) (**2a**: M = Rh; **2b**: M = Ir) generated via H₂ heterolysis by **1a** or **1b** were suggested to transfer both M–H hydride and S–H proton to substrates. The catalytic reactions were terminated by the dissociation of H-SDmp from the metal centers of **2a** and **2b** that occurs at ambient temperature under H₂ atmosphere. © 2009 Elsevier B.V. All rights reserved.

1. Introduction

Heterolytic cleavage of H₂ by transition metal complexes has been useful for catalytic hydrogenation of aldehydes, ketones, and imines [1,2]. A representative class of such hydrogenation catalysts is the ruthenium-amide complexes, in which both ruthenium and amide nitrogen atoms participate in the heterolysis of H₂ [3]. While these complexes efficiently activate H₂, biological hydrogen activation is mediated by metal-thiolate complexes in hydrogenases. The active site of [NiFe] hydrogenase consists of a thiolate-bridged (carbonyl/cyano)iron-nickel complex [4], which has been postulated to use both metal and cysteinyl sulfur atoms in the reaction with H₂. The recent studies on [NiFe] hydrogenase suggested that the nickel center is a plausible binding site of H₂, and that a cysteinyl sulfur bound to nickel possibly accepts a proton generated from the heterolysis of H_2 [5]. Thus the heterolysis of H₂ by [NiFe] hydrogenase may occur in a similar manner to that mediated by ruthenium-amide catalysts.

The unique function of metal-thiolate complex in [NiFe] hydrogenase prompted us to investigate into the structural and reaction models. As structural analogues of the active site of [NiFe] hydrogenase, we have synthesized a series of thiolate-bridged (CO/CN)Fe–Ni and (CO)₃Fe–Ni complexes such as (PPh₄)[(CN)₂(CO)₂-Fe(μ -pdt)Ni(S₂CNEt₂)] (pdt = 1,3-propanedithiolate) and (CO)₃-

Fe(μ -S^tBu)₃Ni{SC(NMe₂)₂}Br [6]. Also we have reported some metal–sulfur complexes as functional models, which are capable of splitting H₂ in a heterolytic manner [7]. For example, the half-sandwich rhodium and iridium complexes having a bulky SDmp thiolate (Dmp = 2,6-(mesityl)₂C₆H₃) [8], [Cp^{*}M(PMe₃)(SDmp)] (BAr^F₄) (1a: M = Rh; 1b: M = Ir; Ar^F = 3,5-(CF₃)₂C₆H₃), were found to promote the heterolysis of H₂ (1 atm) at low temperatures (-50 to -20 °C), giving rise to the M–H/S–H complexes [Cp^{*}M(PMe₃)(H)(HSDmp)](BAr^F₄) (2a: M = Rh; 2b: M = Ir) (Scheme 1) [7e]. Since complexes 2a and 2b contain a hydride (M–H) and a proton (S–H) derived from H₂, we sensed that these reactions could be applied to catalytic hydrogenation reactions. Herein we report the hydrogenation of C=O and C=N groups of benzalde-hyde, *N*-benzylideneaniline, and cyclohexanone, catalyzed by 1a and 1b under 1 atm of H₂ at low temperatures.

2. Results and discussion

Coordinatively unsaturated thiolate complexes **1a** and **1b** mediate the heterolysis of H_2 under mild conditions. This is an advantage for catalytic reactions, because most of the precedent H_2 heterolysis by thiolate complexes require rigorous conditions such as high-pressure of H_2 and/or the presence of external protons [9], preventing their application to hydrogenation catalysts. Whereas the heterolysis of H_2 by **1a** or **1b** proceeds under mild conditions, the resultant M–H/S–H complexes **2a** and **2b** were found to be unstable [7e]. The metal centers of **2a** and **2b** readily liberate H-SDmp under H_2 atmosphere at room temperature, giving rise

^{*} Corresponding authors. E-mail addresses: ohki@mbox.chem.nagoya-u.ac.jp (Y. Ohki), i45100a@nucc.cc. nagoya-u.ac.jp (K. Tatsumi).

Scheme 1. Heterolysis of H₂ mediated by 1a and 1b.

to a complex mixture of rhodium-hydride species or a trihydride complex of iridium $[Cp^{*}Ir(PMe_{3})(H)_{3}](BAr_{4}^{F})$ (**3**) (Scheme 1) [10]. Therefore, the following hydrogenation reactions were conducted at low temperatures. Anticipating that the M–H/S–H complexes **2a** and **2b** transfer both M–H and S–H hydrogen atoms to substrates, a stoichiometric reaction between **2a** and benzaldehyde was examined. Under a nitrogen atmosphere, one equiv of benzaldehyde was added to a CD_2Cl_2 solution of **2a** at –50 °C. The ¹H NMR spectrum of this reaction mixture revealed the regeneration of **1a** and the quantitative formation of benzylalcohol, completing formal turnover of the catalytic hydrogenation (Scheme 2).

Motivated by the stoichiometric reaction between **2a** and benzaldehyde, we set out the catalytic hydrogenation (Table 1). Exposure of H₂ (1 atm) to a CD₂Cl₂ solution of benzaldehyde and catalytic amount of **1a** (2 mol%) at -50 °C resulted in the quantitative formation of benzylalcohol (entry 1). In contrast, a complex mixture of rhodium-hydride species, formed from **2a** and H₂ at room temperature, did not show any catalytic activity (entry 2), suggesting that the thermally unstable Rh–H/S–H complex **2a** is necessary for this catalytic reaction. The Rh–H/S–H hydrogen atoms in **2a** are transferred to benzaldehyde, possibly via formation of six-membered metallacycle consisting of Rh–H, S–H, and C=O groups (Scheme 3) as proposed for the hydrogenation mediated by the ruthenium–amide complexes [3]. While the rhodium complex **1a** serves as a good catalyst for hydrogenation of benzaldehyde, the iridium congener **1b** was found to be less active. Complex **1b** was almost inactive at -50 °C for hydrogenation of benzaldehyde (entry 3), because the H₂ activation by **1b** is very slow at this temperature. At -20 °C, complex **1b** showed some catalytic activity, whereas the longer reaction time was needed (entry 4). The hydrogenation reactions of *N*-benzylideneaniline and cyclohexanone were also attempted in a similar manner (entries 5–8), and the yields of *N*-phenylbenzylamine and cyclohexanol were 66% and 53% yields, respectively, in the presence of **1a** as the catalyst (entries 5 and 7). The lower catalytic activity of **1b** was also the case for the hydrogenation of these substrates. The yield of *N*-phenylbenzylamine was 15% by using **1b** as the catalyst (entry 6), and attempts for the hydrogenation of cyclohexanone by **1b** were unsuccessful (entry 8).

The lower catalytic activity of **1b** was not only because of slow H_2 activation, but also due to side reactions. After the hydrogenation of cyclohexanone by **1b**, the catalytically inactive trihydride complex **3** and H-SDmp were formed. This result indicates the low reactivity of Ir–H/S–H complex **2b** toward cyclohexanone and the facile liberation of H-SDmp from **2b** in the presence of H_2 . The side reaction found in the hydrogenation of benzaldehyde by **1b** was different, and the NMR spectrum indicated the formation of free H-SDmp and a phenyl carbonyl complex

Scheme 2. Proton/hydride transfer from 2a to benzaldehyde.

Table 1	
Hydrogenation reactions catalyzed by 1a and 1b . ^a	

Entry	Substrate	Catalyst	Temperature (°C)	Time (h)	Yield (%) ^b	Product
1	0	1a	-50	24	>98	OH
2		Rh-hydride ^c	-50	24	n.d. ^d	
3	ſĨ [¬]	1b	-50	24	<2	ſĨĬ Ĥ
4	\sim	1b	-20	48	15	\sim "
5		1a	-50	24	66	
6		1b	-20	48	15	
7	$ \sim 0 $	1a	-50	24	53	A .OH
8	() ²	1b	-20	48	n.d. ^d	\bigcirc

^a Standard conditions: 2 mol% catalysts, 1 mL CD₂Cl₂, 1 atm H₂.

 b Determined by 1H NMR with reference to the internal standard {(CH_3)_3Si}_4Si (1 wt%).

 $^{\rm c}\,$ Obtained from the reaction of $\boldsymbol{1a}$ with H_2 (1 atm) at room temperature.

^d Not detected.

Scheme 3. A possible mechanism for hydrogenation.

Fig. 1. Structure of the cationic part of $[Cp^{-}Ir(PMe_3)(Ph)(CO)][BAr_4^F]$ (**4**) with thermal ellipsoids at the 50% probability level. All hydrogen atoms and BAr_4^F anion are omitted for clarity. Selected bond distances (Å) and angles (°): Ir–P 2.3084(18), Ir–C1 1.875(5), C1–O 1.132(6), Ir–C2 2.109(5), P–Ir–C1 89.1(2), C1–Ir–C2 89.3(2), C2–Ir–P 86.22(19).

 $[Cp^*Ir(PMe_3)(Ph)(CO)](BAr_4^F)$ (4), the structure of which was confirmed by an X-ray analysis (Fig. 1). The cationic part of 4 is known, and the OTf salt of 4 has been prepared from the reaction of Cp^TIr(PMe₃)(Me)(OTf) with benzaldehyde [11]. Since this reaction is accompanied by the liberation of methane, benzaldehyde may be deprotonated by the Ir-Me groups to generate the Ir-C(O)Ph species. Similarly, the phenyl and carbonyl ligands in 4 are likely derived from benzaldehyde, and the formation of 4 may involve the deprotonation from benzaldehyde and the decarbonylation from the resultant Ir-C(O)Ph species. As the SDmp ligand in **1b** serves as a base for the heterolysis of H₂, this ligand may deprotonate from benzaldehyde. Other possibilities involve the liberation of H-SDmp from 2b followed by deprotonation of benzaldehyde by Ir-H, or the protonation of the SDmp ligand in **1b** by benzylalcohol to generate an Ir-alkoxide species which may uptake a proton from benzaldehyde.

In summary, we have demonstrated the hydrogenation of benzaldehyde, *N*-benzylideneaniline, and cyclohexanone, catalyzed by coordinatively unsaturated rhodium and iridium complexes **1a** and **1b** under 1 atm of H_2 at low temperatures. These reactions involve the heterolysis of H_2 to form the M–H/S–H complexes **2a** and **2b**, which may transfer both M–H hydride and S–H proton to substrates in a concerted manner as proposed for the hydrogenation mediated by ruthenium–amide complexes (Scheme 3). Whereas the yields of *N*-phenylbenzylamine and cyclohexanol were not sufficient and the catalytic activity of **1b** was low, this study may suggest a new utility of the metal–sulfur bond in thiolate complexes.

3. Experimental

3.1. General procedures

All reactions and manipulations were performed under a nitrogen atmosphere using a glove box and standard Schlenk techniques. CD₂Cl₂ was dried by CaH₂ and distilled prior to use. Hexane and CH₂Cl₂ were purified by the method of Grubbs and coworkers [12], where the solvents were passed over columns of activated alumina and supported copper catalyst supplied by Hansen & Co. Ltd. The ¹H, ¹³C $\{^{1}H\}$, and $\{^{31}P\{^{1}H\}$ NMR spectra were acquired on a JEOL ECA-600. The proton and carbon signals were referenced to the residual signals of CD₂Cl₂. The ³¹P{¹H} NMR chemical shifts are relative to the external reference of 85% H₃PO₄. Infrared spectrum was recorded on a JASCO FT/IR-410 spectrometer. ESI-MS spectrum was obtained from Micromass LCT TOF-MS spectrometer. Elemental analysis of 4 was recorded on a LECO-CHNS-932 elemental analyzer where the crystalline samples were sealed in silver capsules under nitrogen. X-ray diffraction data of 4 was collected on a Rigaku AFC8 equipped with a CCD area detector by using graphite-monochromated Mo K α radiation.

3.2. Reaction of **2a** with 1 equiv. of benzaldehyde

A Schlenk tube with a stirring bar was charged with **1a** (30.4 mg, 0.02 mmol) and CD₂Cl₂ (0.6 mL with 1 wt% {(CH₃)₃Si}₄Si as the internal standard). After freeze–pump–thaw cycles, the tube was filled with 1 atm of H₂ at -80 °C, and the tube was kept at -50 °C with stirring. The color of solution changed from purple to green, indicating the dominant formation of **2a** (the yield of **2a** was 89% under a similar condition [7e]). The Schlenk tube was filled with N₂ after freeze–pump–thaw cycles, and one equiv of benzaldehyde (25 µL of 0.8 M CD₂Cl₂ solution, 0.02 mmol) was added to this solution at -50 °C. The solution was stirred for 6 h under a N₂ atmosphere. The color of the reaction mixture turned to purple, and the ¹H and ³¹P{¹H} NMR revealed the conversion of benzaldehyde to benzylalcohol (>98%), regeneration of **1a** (86%), and the formation of decomposed rhodium-hydride species (14%) and H-SDmp (14%).

3.3. General procedure for the catalytic hydrogenation

In a glove box, a Schlenk tube with a stirring bar was charged with **1a** or **1b** (0.02 mmol) and CD₂Cl₂ (0.5 mL, with {(CH₃)₃Si}₄Si as the internal standard). After freeze–pump–thaw cycles, the tube was filled with 1 atm of H₂ at $-80 \degree C$ (**1a**) or $-40 \degree C$ (**1b**), and substrate (1 mmol in 0.5 mL CD₂Cl₂) was added under H₂ atmosphere. The reaction mixture was stirred at $-50 \degree C$ (**1a**) or $-20 \degree C$ (**1b**) under H₂, and was warmed to room temperature after catalysis. The yields of the catalytic products were determined by the ¹H NMR.

The rhodium-hydride species used in Table 1.entry 2, was generated from the reaction of a CD₂Cl₂ (0.5 mL with $\{(CH_3)_3Si\}_4Si$) of **1a** (0.02 mmol) with 1 atm of H₂ at room temperature for 24 hrs. The color of the solution turned from purple to dark green, and the ¹H and ³¹P{¹H} NMR showed the conversion of **1a** to uncharac-

terizable rhodium-hydride species and H-SDmp [7e,13]. This mixture was cooled and used for the catalytic reaction.

3.4. Characterization of $[Cp^{1}Ir(PMe_{3})(Ph)(CO)](BAr_{4}^{F})$ (**4**) obtained from the reaction in Table 1, entry 4

According to Table 1, entry 4, complex 1b was treated with benzaldehyde and H₂ (1 atm) at -20 °C. After 48 h, the ¹H and ³¹P{¹H} NMR spectra of the reaction mixture exhibited the signals for [Cp^T Ir(PMe₃)(Ph)(CO)](BAr₄^F) (**4**, 37% based on the internal standard {(CH₃)₃Si}₄Si), H-SDmp (37%), and **2b** (63%). Single crystals of **4** suitable for X-ray diffraction and elemental analysis were obtained by diffusing this solution into hexane at room temperature under a nitrogen atmosphere. ¹H NMR (CD₂Cl₂): δ 7.71 (bs, 8H, o-H of Ar^F), 7.56 (bs, 4H, p-H of Ar^F), 7.13 (m, 5H, Ph), 1.95 (d, J_{PH} = 2.0 Hz, 15H, Cp^{*}), 1.63 (d, J_{PH} = 10.6 Hz, 9H, PMe₃). ³¹P{¹H} NMR (CD₂Cl₂): δ -35.6 (s, PMe₃). ¹³C{¹H} NMR (CD₂Cl₂): δ 167.5 (d, J_{PC} = 11.6 Hz, CO), 162.3 (q, J_{BC} = 50.2 Hz, *ipso-C* of Ar^F), 139.8, 131.0 (s, o-C of Ph), 135.4 (s, o-C of Ar^F), 129.4 (q, J_{FC} = 34.7 Hz, m-C of Ar^F), 126.3 (s, *m*-C of Ph), 125.2 (q, J_{FC} = 274.1 Hz, CF₃), 122.2 (d, J_{PC} = 9.7 Hz, ipso-C of Ph), 118.0 (s, p-C of Ar^F), 104.2 (s, C₅(CH₃)₅), 16.3 (d, J_{PC} = 42.5 Hz, PMe₃), 9.7 (s, C₅(CH₃)₅). ESI-MS (CH₂Cl₂): m/z = 509.1 (4⁺). IR (KBr pellet): 2042 (v_{CO}) cm⁻¹. Anal. Calc. for C₅₂H₄₂PF₂₄OBIr: C, 45.49; H, 3.08. Found: C, 45.49; H, 3.22%.

3.5. Degradation of **1a** in the presence of excess benzaldehyde at room temperature

The reaction of **1a** (30.4 mg, 0.02 mmol) with benzaldehyde (106.2 mg, 1 mmol) in CD₂Cl₂ at room temperature gave a brown solution. The ¹H and ³¹P{¹H} NMR showed the formation of free H-SDmp and an uncharacterizable rhodium species having Cp and PMe₃. ¹H NMR (CD₂Cl₂): δ 1.72 (d, *J*_{PH} = 3.1 Hz, Cp^{*}), 1.50 (d, *J*_{PH} = 11.0 Hz, PMe₃). ³¹P{¹H} NMR (CD₂Cl₂): δ 3.29 (d, *J*_{RhP} = 157.9 Hz, PMe₃). After the catalytic hydrogenation of benzal-dehyde (Table 1, entry 1), the same rhodium species was detected as the degradation product at room temperature.

3.6. X-ray structural determination

Crystal data and refinement parameters of 4 are summarized in Table 2. Single crystals were coated with oil (Immersion Oil, type B: Code 1248, Cargill Laboratories Inc.) and mounted on loop. Diffraction data were collected at -100 °C under a cold nitrogen stream on a Rigaku AFC8 equipped with Mercury CCD detector equipped with a graphite-monochromated Mo K α source (λ = 0.71070 Å). Six preliminary data frames were measured at 0.5° increments of ω , to assess the crystal quality and preliminary unit cell parameters. The intensity images were also measured at 0.5° intervals of ω. The frame data were integrated using Rigaku/MSC CrystalClear program package, and the data sets were corrected for absorption using REQAB program. The calculation was performed with SHELX-97. Structure was solved by a Patterson method and refined by full-matrix least-square procedures on F^2 . Anisotropic refinement was applied to all non-hydrogen atoms except for disordered CF₃ groups of BAr^F₄. All of the hydrogen atoms were placed at calculated positions. Five of CF₃ groups are disordered over two positions. The atom coordinates are available as a CIF file.

Acknowledgment

This research was financially supported by Grant-in-Aids for Scientific Research (Nos. 18GS0207 and 18064009) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan. M.S. thanks the IRTG program (International Research Training

Table 2

Crystal data and structure refinement for $[Cp^{*}Ir(PMe_{3})(Ph)(CO)](BAr_{4}^{F})$ (4).

	4
Formula	C ₅₂ H ₄₁ OIrF ₂₄ PB
Formula weight	1371.86
Crystal color, habit	colorless, block
Crystal dimensions (mm)	$0.30 \times 0.10 \times 0.05$
Crystal system	Monoclinic
Space group	<i>P</i> 2/ <i>c</i> (No. 13)
a (Å)	18.611(3)
b (Å)	12.612(2)
<i>c</i> (Å)	23.741(4)
β(°)	107.041(2)
$V(Å^3)$	5327.8(16)
Ζ	4
$D_{\text{calc}} (\text{g cm}^{-3})$	1.71
μ (Mo K $lpha$) (cm $^{-1}$)	26.65
Max 20 (°)	55.0
Number of reflections measured	Total: 41317
	Unique: 12168 (<i>R</i> _{int} = 0.069)
Number of observations (all reflections)	12168
Number of variables	707
Reflection/parameter ratio	17.21
$R_1 \ (I > 2\sigma(I))^a$	0.0538
wR_2 (all reflections) ^b	0.143
GOF on F^{2c}	1.069

^a $R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0| (I > 2\sigma(I)).$

 $WR_2 = [(\Sigma(w(|F_0| - |F_c|)^2 / \Sigma w F_0^2))^{1/2} \text{ (all reflections).}]$

^c GOF = $[\Sigma w(|F_o| - |F_c|)^2/(N_o - N_v)]^{1/2}$ (where N_o = number of observations, N_v = number of variables).

Group "Complex Functional Systems in Chemistry" Münster-Nagoya) for a graduate externship.

Appendix A. Supplementary material

CCDC 715530 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/ data_request/cif. Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.jorganchem. 2009.02.018.

References

- E.T. Papish, M.P. Magee, J.R. Norton, in: M. Peruzzini, R. Poli (Eds.), Recent Advances in Hydride Chemistry, Elsevier, Amsterdam, 2001 (Chapter 2).
- [2] G.J. Kubas, Metal Dihydrogen and σ-Bond Complexes, Kluwer Academic/ Plenum Publishers, New York, 2001.
- [3] (a) For example: R. Noyori, T. Ohkuma, Angew. Chem., Int. Ed. 40 (2001) 40– 73;
 - (b) R. Noyori, M. Yamakawa, S. Hashiguchi, J. Org. Chem. 66 (2001) 7931-7944;
 - (c) R. Noyori, M. Kitamura, T. Ohkuma, Proc. Natl. Acad. Sci. USA 101 (2004) 5356–5362;
 - (d) R. Noyori, C.A. Sandoval, K. Muñiz, T. Ohkuma, Philos. Trans. R. Soc. A 363 (2005) 901–912;
 - (e) K. Muñiz, Angew. Chem., Int. Ed. 44 (2005) 6622-6627;
 - (f) S. Gladiali, E. Alberico, Chem. Soc. Rev. 35 (2006) 226-236;
 - (g) J.S.M. Samec, J.E. Bäckvall, P.G. Andersson, P. Brandt, Chem. Soc. Rev. 35 (2006) 237–248;
 - (h) T. Ikariya, A.J. Blacker, Acc. Chem. Res. 40 (2007) 1300-1308;
 - (i) M. Ito, T. Ikariya, J. Chem. Soc., Chem. Commun. (2007) 5134-5142.
- [4] (a) For example: V. Niviére, C. Hatchikian, C. Cambillau, M. Frey, J. Mol. Biol. 195 (1987) 969–971;

(b) A. Volbeda, M.-H. Charon, C. Piras, E.C. Hatchikian, M. Frey, J.C. Fontecilla-Camps, Nature 373 (1995) 580–587;

(c) A. Volbeda, E. Garcín, C. Piras, A.L. de Lacey, V.M. Fernandez, E.C. Hatchikian, M. Frey, J.C. Fontecilla-Camps, J. Am. Chem. Soc. 118 (1996) 12989–12996;

(d) Y. Higuchi, T. Yagi, N. Yasuoka, Structure 5 (1997) 1671-1680;

(e) E. Garcin, X. Vernede, E.C. Hatchikian, A. Volbeda, M. Frey, J.C. Fontecilla-Camps, Structure 7 (1999) 557–566;

- (f) H. Ogata, Y. Mizoguchi, N. Mizuno, K. Miki, S. Adachi, N. Yasuoka, T. Yagi, O. Yamauchi, S. Hirota, Y. Higuchi, J. Am. Chem. Soc. 124 (2002) 11628–11635.
- [5] (a) Recent reviews M.Y. Darensbourg, E.J. Lyon, X. Zhao, I.P. Georgakaki, Proc. Natl. Acad. Sci. USA 100 (2003) 3683–3688;

(b) D.J. Evans, C.J. Pickett, Chem. Soc. Rev. 32 (2003) 268-275;

(c) P.M. Vignais, B. Billoud, Chem. Rev. 107 (2007) 4206-4272;

(d) J.C. Fontecilla-Camps, A. Volbeda, C. Cavazza, Y. Nicolet, Chem. Rev. 107 (2007) 4273-4303;

(e) A.L. De Lacey, V.M. Fernández, M. Rousset, R. Cammack, Chem. Rev. 107 (2007) 4304–4330;

- (f) W. Lubiz, E. Reijerse, M. van Gastel, Chem. Rev. 107 (2007) 4331–4365.
 [6] (a) Z. Li, Y. Ohki, K. Tatsumi, J. Am. Chem. Soc. 127 (2005) 8950–8951;
- (b) Y. Ohki, K. Yasumura, K. Kuge, S. Tanino, M. Ando, Z. Li, K. Tatsumi, Proc. Natl. Acad. Sci. USA 105 (2008) 7652–7657;
 - (c) S. Pal, Y. Ohki, I. Yoshikawa, K. Kuge, K. Tatsumi, Chem. Asian J. (2009), doi:10.1002/asia.200800434;
- (d) S. Tanino, Z. Li, Y. Ohki, K. Tatsumi, Inorg. Chem. 48 (2009) 2358–2360.
 [7] (a) Y. Ohki, N. Matsuura, T. Marumoto, H. Kawaguchi, K. Tatsumi, J. Am. Chem.
 - (b) T. Matsumoto, Y. Nakaya, K. Tatsumi, Angew. Chem., Int. Ed. 47 (2008)
 - 1913–1915;

(c) T. Matsumoto, Y. Nakaya, N. Itakura, K. Tatsumi, J. Am. Chem. Soc. 130 (2008) 2458-2459;

(d) Y. Ohki, Y. Takikawa, H. Sadohara, C. Kesenheimer, B. Engendahl, E. Kapatina, K. Tatsumi, Chem. Asian J. 3 (2008) 1625–1635;

- (e) Y. Ohki, M. Sakamoto, K. Tatsumi, J. Am. Chem. Soc. 130 (2008) 11610-11611.
- [8] (a) J.J. Ellison, K. Rhulandt-Senge, P.P. Power, Angew. Chem., Int. Ed. 33 (1994) 1178–1180;

(b) Y. Ohki, H. Sadohara, Y. Takikawa, K. Tatsumi, Angew. Chem., Int. Ed. 43 (2004) 2290-2293;

- (c) S. Ohta, Y. Ohki, Y. Ikagawa, R. Suizu, K. Tatsumi, J. Organomet. Chem. 692 (2007) 4792–4799;
- (d) Y. Ohki, Y. Ikagawa, K. Tatsumi, J. Am. Chem. Soc. 129 (2007) 10457-10465;
- (e) M. Ito, T. Matsumoto, K. Tatsumi, Inorg. Chem. 48 (2009) 2215–2223.
 [9] (a) J.C.V. Laurie, L. Duncan, R.C. Haltiwanger, R.T. Weberg, M. Rakowski DuBois,
 - J. Am. Chem. Soc. 108 (1986) 6234–6241;
 - (b) P.G. Jessop, R.H. Morris, Inorg. Chem. 32 (1993) 2236–2237;
 - (c) M. Schlaf, A.J. Lough, R.H. Morris, Organometallics 15 (1996) 4423–4436;
 (d) D. Sellmann, G.H. Rackelmann, F.W. Heinemann, Chem. Eur. J. 3 (1997)
 - 2071–2080; (e) D. Sellmann, T. Gottschalk-Gaudig, F.W. Heinemann, Inorg. Chem. 37
 - (1998) 3982–3988; (19 B. Sullaren A. Firmattel Annuel Cham. Let. Ed. 20 (1990) 2022, 2025.
 - (f) D. Sellmann, A. Fürsattel, Angew. Chem., Int. Ed. 38 (1999) 2023–2026;
 - (g) D. Sellmann, F. Geipel, M. Moll, Angew. Chem., Int. Ed. 39 (2000) 561–563; (h) D. Sellmann, R. Prakash, F.W. Heinemann, M. Moll, M. Klimowicz, Angew. Chem., Int. Ed. 43 (2004) 1877–1880.
- [10] The complex cation [Cp Ir(PMe₃)(H)₃]* is known: T.M. Gilbert, R.G. Bergman, J. Am. Chem. Soc. 107 (1985) 3502–3507.
- [11] P.J. Alaimo, B.A. Arudtsen, R.G. Bergman, Organometallics 19 (2000) 2130-2143.
- [12] A.B. Pangborn, M.A. Giardello, R.H. Grubbs, R.K. Rosen, F.J. Timmers, Organometallics 15 (1996) 1518–1520.
- [13] A known hydride complex [Cp^{*}Rh(PMe₃)(H₂)H]⁺ was observed as a thermally unstable species: F.L. Taw, H. Mellows, P.S. White, F.J. Hollander, R.G. Bergman, M. Brookhart, D.M. Deinekey, J. Am. Chem. Soc. 124 (2002) 5100–5108.